

Testing of Prototypes of Actively Shaken In-Situ Passive Sampler Platform for Polychlorinated Biphenyls

Oindrila Ghosh*, Mehregan Jalalizadeh**, Upal Ghosh*

*Environmental Engineering, University of Maryland Baltimore County (UMBC)

**Exponent, Pasadena, California.

Introduction to Passive Sampling

PASSIVE SAMPLING:

- Provides freely dissolved concentration
 pollutant bioavailability
- Very low detection limits (ng/L to pg/L)
- Avoids need for collecting and extracting large volumes of water to meet instrument detection limits

Research Motivation

Slow mass transfer in sediment porewater of more hydrophobic compounds.

Larger errors in calculation of PRC Correction term.

Inaccurate C_{free} measurement

Dioxins

Furans

Develop passive sampling platform that introduces periodic vibration for faster uptake of more hydrophobic compounds (like higher homolog PCBs/dioxins/furans) by disrupting Water Boundary Layer.

Prototypes: P1 14G AN02F (VibraSP3

Mini microcontroller 3.7 V lithium 2500mAh **Battery**

3 V (14.3 G) Vibration motor from Precision Microdrives

Aluminum case

> Geosyntec[▶] consultants

Prototypes: P2_110G_Lou/Oin

Field Test:

Kingman Lake in Washington D.C.

10-day long deployment [10-20 Dec 2019]

In-Lab Experiment:

- Sediments from several sites homogenized with water.
- 2L Beaker: Static Samplers
- 2L Glass jar with lid: Fully-Mixed slurry on roller
- PE sheets impregnated with C13 Performance
 Reference Compounds (PRCs)
- Vibration Frequency: 5s pulse, 1 hour pause.

Field Testing & problems we ran into..

P2_110G_Oin vibrated with an amplitude of ~2.5G while inside 3" of sediment throughout the deployment time of 10days until it was taken on the day of retrieval.

Normal (un-labelled, C12) PRCs

C13 PRCs

In-Lab Testing

PRC 54* - tetra

PRC 111* -penta

PRC 138* -hexa

PRC 178* -hepta

- Higher rate of loss of the lower homolog PRCs
- Loss of PRC in static slower than in the vibrating prototypes (gap reduces with more hydrophobic PRC)

Concentration of PCBs accumulated in Passive Samplers, Cps

In-Lab Testing

Conclusions

- Overall, introducing periodic vibration to the passive sampling platform improved mass transfer by introducing turbulence artificially.
- With constant vibration frequency for both prototypes, a stronger vibration helped in approaching equilibrium faster. Also, the larger prototypes can accommodate more mass of PE.
- Big improvement in the rate of approaching equilibrium for higher homolog groups (hexa to octa) when vibration is introduced.
- A more frequent but short-lived vibration might improve the rate of equilibrium even further.
- Increase the effectiveness of the vibration by changing how far the fins extend.

Thank You

Dr. Upal Ghosh

Dr. Mehregan Jalalizadeh

Ghosh Lab members:

Louis Cheung Mandar Bokare Nathalie Lombard Songjing Yan

Geosyntec ConsultantsChris Martin

